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A unified Variational Solution to Microstrip

Array Problems

VITTORIO RIZZOLI

Absfracf—A very general variational procedure ‘is used to com-

pute single or coupled microstrips under the quasi-TEM approxima-

tion. The capacitance model is found by means of a unique funda-

mental cell. The method is essentially an extension of Smith’s [1],

but may be used to study a wider variety of problems, such as non-

uniform strip arrays, coplanar striplines, and broad-side coupled

strips. Moreover, it is also possible to compute the coupling capaci-

tance between nonadjacent strips.

I. INTRODUCTION

I
T has been shown in [1], [2], that the capacitance

model of single or coupled microstrip lines can be

computed when capacitances of suitable t‘fundamental
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cells” are known. A fundamental cell is a single-strip

rectangular region bounded by electric and/or magnetic

walls. In [1] uniform strip arrays are computed by means

of two fundamental cells, while in [2] the procedure is

extended to nonuniform arrays by use of three fundamental

cells. In the present paper a unique fundamental cell is

used, including all the cliff erent types as special cases. In

this way the computation procedure is unified and be-

comes particularly suitable for programming on a digital

computer. Coplanar striplines as well as broad-side

coupled strips can be calculated by this method; the saving

in computer time is high (up to 70 percent) with respect

to techniques based on optimization of the charge distribu-

tion, such as [7], and even higher with respect to relaxa-

tion techniques, such as [6]. This is due to the use of

a variational method in the computations. The method is

also suitable for computing the coupling capacitance

between nonadjacent strips of a coplanar array.
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II. CAPACITANCE CALCULATION FOR TABLE I

A RECTANGULAR CELL
value of 1 typEof left wall value of I

1
type of right wall

The fundamental cell that will be referred to throughout
2

thk~a~er isshownin Fi~. 1. Maxnetic and electric walls 1 el.ctric < electric. .
are represented by dashed and full lines, respectively, i I I I I
while a dotted and dashed line may represent either type

of wall. In Fig. 1, WI (4 is understood to be zero when the

left (right ) wall is magnetic. Zero thickness conductors

are assumed.

ISow suppose that the center strip is held at a 1-V

potential while the two side strips are grounded. Then

a lower bound on the capacitance C of the center strip

with respect to ground may be found by the variational

series [2]:

where

2 magnetic 2 magnetic

n-

@=~(l+112– 111)

e = (11– l)+r

(4)U=(11–1)(12– 1).

Finally, the increment of the summation variable n is

given by

An=l+l~z–~11. (5)

This formulation, although somewhat cumbersome, is very

1 tanh (nrgz/1) [tanh (nmil/1) + tanh (nmgl/1) c.]
(2)

~“ = n=” tanh (nrgz/1) [1 + c, tanh (nr@) tanh (nmh/1) ]c, + tanh (nwdl/0 + c. tanh (n~gl/Q “

In (1), Q represents the total charge on the center strip,

and P%is the nth coefficient of the Fourier expansion of the

line charge density p(z) at the upper air-dielectric inter-

face (i.e., for y = gl + dl). In order to compute pn when

W1 and/or toz is nonzero, the negative charge on the side

strips must be taken into account.

Equations (1) and (2) are so written as to include all

the possible cases; the parameters 1 and u in them must

be specified according to the type of side walls. The same

is true for the following expression of the coefficient P.:

~

/

so/2

pn=— P(Z) sin [n(7rz/t + o) + 0] clx. (3)
aO –d2

The different values of the parameters u,l,@,O are best

expressed in terms of two indexes, II and 1’, whose values

are bound to the type of side walls in the way shown in

Table I.

When I, and 1’ are given the values specified in Table I,

we have

Fig. 1. Basic rectangular cell.

useful in view of the automatic computation of the

capacitance.

In practical cases, a trial function is used to calculate the

coefficients p. and the total charge Q. Since the expression

(1) is stationary with respect to p(z), a good approxima-

tion can be achieved even by a poor choice of the trial

function. Here, the trial function will be chosen as the

effective, charge density for a homogeneous symmetrical

cell having height 2ho as shown in Fig. 2. ho is defined as

ho = min (g, + dl,g2) (6)

so that a good trial function is found even in the case of

inverted microstrips.

If the capacitance of this cell is denoted by CO, then

from (1) we can obtain the series:

1 ~

[( )

–1

+U :+
coao ho

z= (e. +l)co gl + G?l/6. – (6, + 1) cOaO1
(7)

where

fno . +
rmho

tanh —
2nfr60 1“

(8)

Equation (7) is Smith’s series for C; it is much more

rapidly converging than (1) since its nth term decays

exponentially with increasing n for large values of n. In

most practical cases the capacitance in air Cl is also re-

quired. This is simply obtained by putting ,, = 1 in (2)

and (7). Note that the same trial function, i.e., the same

coefficients p., may be used in the two cases so that C

and Cl may be computed simultaneously with a negligible

increase of computer time.

An upper bound on the value of C, may be easily found
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Fig. 2. Homogeneous symmetrical cell for trial function calcu-
lations.

as well. In fact, it should be noted that (1) holds exactly

when the coefficients P. and the total charge Q are com-

puted by means of the true charge-distribution function

p(z). In this case Q = C since the voltage is unity: Now

if we denote by ~(x) the voltage at the upper air-dielectric

interface, from (1) follows:

(C= u:+
~oao )4J02 + : w.’ (9)

gl + all/e. n

where

(lo)

In (9), ~fi is the nth coefficient of the Fourier expansion

of ~(x) and is given by a formula similar to (3). For

n = O we have:

J*O = ~ “’/2
Y(X) dx. (11)

aO –a012

Again, expression (9) is stationary with respect to the

function $(x), provided that only variations are considered

leaving unchanged the voltage on the conductors. When

a trial function is used in place of the true IJ (x), (9) gives

an upper bound on the capacitance C. Now if the trial

function is chose~ in the same way as before, i.e., it is

taken as the true voltage distribution for the homogeneous

cell of height 2ho, the upper and lower bound are typically

within a few percent units of each other in a wide range

of geometries. Of course, the error could be minimized by

giving C a value equal to the average between the upper

and lower bound. However, since no practically significant

difference is found, the numerical results presented in this

paper are based only on lower bound calculations. This

has the advantage of a 50-percent saving in computer

time. A more rapidly converging series can be obtained

from (9) by a procedure similar to that leading from (1)

to (7).
A detailed calculation of the trial functions p(x),@ (x)

is presented in Appendix A.

III. APPLICATIONS

A. Coupling Capacitance Between Nonadjacent Strips

Let us consider an array of equal and equally spaced

strips, as shown in Fig. 3. In Fig. 4 we show the assumed

w
Fig. 3.

(-’

Uniform array of coupled microstrips.

,,C3 Cgf,,

T/////////// /’////////’//////////’’/////

Fig. 4. Capacitance model of the array.

(’ ~-th cell

.

Fig. 5. Array divided into rectangular cells in the presence of a dc
excitation.

z C3 2C3

Fig. 6. Capacitance model of each cell.

capacitance model for the array. The self-capacitance C

and the coupling capacitance between adjacent strips CA

can be computed by the method described in [1]. A com-

putation procedure for C, will now be developed.

Suppose that the strips of the array are held at constant

potentials whose values (in volts) are given by the

sequence . ..1 0 –1 O 1 0 –l . . .. Ifthis is the

case, the electric-field pattern has an odd symmetry with
respect to the center of each grounded strip. Thus electric

walls can be introduced without perturbing the electric

field (see Fig. 5), so that the array is divided into cells con-

taining only one conductor each. Any one of these cells

is a special case of the fundamental cell of Fig. 1, so that its

capacitance C. may be regarded as known. On the other

hand, the capacitance model for each cell (drawn from

Fig. 4) is as shown in I?ig. 6. Thus we have
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Fig.7. Capacitance parameters of thearray versus strip width.
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Fig. 8. Capacitance parameters of thearray versus strip spacing.
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Flg.9. Capacitance parameters of thearray versus lower gap.
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Fig. 10. Capacitance model ofthr*wire line.

C.=C+2CA+4C8 (12)

yielding Ca once C,, C, and CA have been computed.

As an example, the capacitance model was computed for

an array whose reference dimensions are

gl=gz= 10mm

d~ = 0.5 mm

.s = 0.2 mm

w = 0.5 mm

Er = 10. (13)

In Figs. 7–9, C, CA, and.C8 are plotted versus w, .s,and gl,

respectively. The parameters which are not varied in each

plot are held to the values given by (13). These plots were

drawn by a Benson plotter driven offline by a CDC 6600

computer.
It can be seen that C3 is always small with respect to CA,

while it may be comparable and even large with respect

to C depending on the geometry. However, the effect of Cs

on the electrical behavior of the device is usually negligible,

owing to the fact that Cs << CA. As a check of this state-

ment, consider the three-wire line that can be obtained

from the array by grounding all of the strips, except for

three consecutive ones. The capacitance matrix of such

a line is

[

C + 2CA + .2C3 – CA – C3

– cA C + 2CA + 2C8 – CA

– C8 – c,4 C + 2C/1 + 2C81
(14)

as can be inferred from the model of Fig. 10. In the case
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Fig. 11. Characteristic irnpedanceof coplanar stripline.
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Fig. 12. Relative phase velocity of coplanar stripline.
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of the array defined by (13), we have:

[:ZZI
while neglecting the effect of Cs yields:

[’:: +:1 ‘1’)

All capacitances are expressed in picofarads/meter. In the

two cases the relative phase velocities of the normal modes

are given by

c,#o C3=0
0.478 0.469

0.447 0.437

0.434 0.431. (17)

Thus in this case maximum percentage change is about

2 percent.

B. Coplanar Stripline

When the side walls are both electric, the fundamental

cell of Fig. 1 is identical to the cross section of a coplanar

stripline (see [.5], [6]). The characteristic impedance and

relative phase velocity can be computed from the dielectric

and air capacitances C and Cl by means of the well-known

formulas:

1
z. =

v. (ccl) 1/2

()c, ’12
up =

-E

(1.5)

(18)

where VO= 2.99S m/s. Note that unsymmetrical as well

as symmetrical strips may be computed in this way.

In Figs. 11 and 12 the characteristic impedance and

relative phase velocity are plotted versus the width

W1 = WZof the grounded side strips for a coplanar stripline

having:

g1=g2=10mm

dl = 0.5 mm

a. = 20 mm

6, = 10 (19)

and for three different widths, i.e., 0.5, 1, and 2 mm.

An excellent agreement exists between the data in

Figs. 14 and 15 and the results published in [10].

C. Broad-Side Coupled Coplanar Striplines

Fig. 13 shows the cross section of a pair of broad-side

coupled coplanar striplines. In this case the section is

229

9*
Wi bi W ~ ‘w*

2 di ///////////~

9t

Fig. 13. A pair of broad-side coupled coplanar lines.

even cell odd cell

(a) (b)

Fig. 14. Even- and odd-mode lines for coplanar pair.

symmetrical with respect to the middle of the dielectric

slab. In Fig. 14(a) and (b) the associated even and odd

cells are shown. Note that the capacitance of the odd cell

can be directly computed by the procedure of Section II

since this is a special case of the fundamental cell. The

capacitance of the even cell may still be computed by the
series (7) with [4]:

j.=J2. tanh (n~qz/aO)

nmo 1 + c, tanh (nrdl/aO) tanh (nmgz/aO)

ho = g~. (20)

This procedure holds even for cross sections that do not

have a vertical plane of symmetry. Once the even and

odd capacitances C~,C~ and the corresponding values in

air, C~l,Col, have been found, the even- and odd-mode

impedance and relative phase velocity are given by

z. =
1

‘vO(Cec.l)1/2

Z. =
1

‘vO(Cocol)1/2

(-)
Cel 1/2

Vpe =
c.

()
col w

Vpo = -z” (21)

As an example, in l;ig. 1.5 the impedances and phase

velocities are plotted as a function of WI = ZUZfor a line

having

g2 = 5 mm

dl = 0.5 mm

w = 0.5 mm

aO = 20 mm

Ep = 10. (22)

Perhaps the most attracting feature of this kind of line

is the tight coupling that can be achieved between the two

parallel conductors. Let us consider a section of length 1

of the line as a four-port network, the ports being taken
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Fig. 15. Even- andodd-mode characteristic impedance andrelative phase velocity for coupled coplanar striplines.

in the order shown in the insert of Fig. 16. The entriesof

the scattering matrix of this network will be denotedby

s11,sZI,SSI,S41.Let the load impedance at each of the ports

be givenby

R = (ZeZJ1/2. (23)

In order that the device behave as a directional coupler,

one of the following sets of conditions must hold:

S1l = o

S41 = o (24)

or

sn = o

s~ = o. (25)

The conditions (24) are met at a given frequency j when

the length of the coupler is [7]:

1=
vpevp.

(Vp. – VPo)j “
(26)

In this case the coupling in decibels is

c = – 20 log,ci I S81]

1 – ~2&

= 20 loglo
p(ez – 1)

where

(20)’/2 – (2.)’/2

p = (2.)1/2+ (zJ1/2

(27)

(28)
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Fig. 16. Coupling in decibels for coplanar stripline directional coupler.

‘=’X’(-L2’L) (29)

In turn, the conditions (25) are met when the length

is one-half of (26). In the latter case the coupling is again

given by (27) with (29) replaced by

( frvpo
6 = exp –.I’

)vpe — up.
(30)

In Fig. 16 the coupling in decibels for these situations is

plotted as a function of WI = WZfor the same line that is

referred to in Fig. 15. As a first example, a 6-dB coupler

having .M1= O can be obtained when wl = WZ = 2.6 mm

with a length of the coupled section of 6.9 cm at 4 GHz.

As a further example, a O-dB coupler from port 1 to 4 can

be realized when WI = W2 = 7.5 mm with a length of the

coupled section of 4.35 cm at 4 GHz.

IV. CONCLUSION

A very general variational procedure has been proposed

for the calculation of uniform microstrip transmission lines

under the quasi-TEM assumption. This method is highly
efficient from a numerical point of view and its formulation

is particularly suitable for programming on a digital

computer.
A Fortran routine based on the formulas presented here

has been written by the author and the results of some

calculations are presented. These results agree with other

published results concerning the classical cases of uniform

microstrip arrays [1] and symmetrical broad-side coupled

strips [8].

In addition, other cases such as nonsymmetrical cross

sections, coplanar striplines, and coupling between non-

adj scent strips may be treated without further com-

plication.

APPENDIX A

GENERAL CONFORMAL MAPPING FOR

A RECTANGULAR REGION

Let us consider a rectangular region filled with a hom-

ogeneous medium of permittivity e whose boundary is
made of two electric and two magnetic walls. A possible

geometry is shown in Fig. 17. We want to compute the

capacitance ~ between the electric conductors and the

line charge density on them when they are held at 1-V

and O-V potentials, respectively. This problem is very

general and includes all the cases which are of interest here.

The dimensions of the rectangular cell are denoted by

ao and ho. Note that the point (O,hO) may be assumed to

belong to an electric conductor oming to the type of

fundamental cells we are interested in (see Fig. 1). The
contour of Fig. 17 will be mapped onto that of Pig. 18,

whose capacitance is known, by a con formal mapping

P = P (.z). The mapping is accomplished by successive
steps.

First, the contour of Fig. 19(a) is obtained by the map-

ping function

t = sn (Rz,K) (Al)
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Fig. 19. Intermediate mapping steps.

where sn is the Jacobian sine-amplitude function, and R

is given by

R = 227’(1,K) 3’[1,(1 – Kqll’]——
h, “

(A2)
uO

By F (t,K) we denote the first incomplete elliptic integral

of modulus K. The constant K (O < K < 1) is the solution

of the transcendental equation

E’(l,K) ao

F[l, (l – K2)l/2] = ZO = T
(A3)

and thus may be expressed in terms of 0 functions [3] as

follows :

(K = &[O,exp ( – ~/r)] 2

)03[0,exp ( –m/r) ] ‘
(A4)

The real numbers a,b,c,d defined in Fig. 19 (a) are

now given by (see Fig. 17) :

a = sn (Rz~,K)

b = sn (Rz~,K)

‘ c = sn (Rzc,K)

d = sn (RzD,K) (A5)

while the mappings leading from the contour of Fig. 19(a)

to that of Fig. 18 through Fig. 19(b) and (c) are

2t c+d
T=— —

c—d—c—d

p == F(,,K~) . (A6)

The constants appearing in (A6) must be given the follow-

ing values:

1 +AB + [(1 – A2)(1 – Bz)]lia
q3=;2=

A+B

B(1 – Az)l/2 – A(l – B’)1/2
K~ =

(1 – A’)’12 + (1 – B2)l/2 “
(A7)

Finally, A and B are defined in Fig. 19(b) and may be

expressed through the first of (A6) as

~b c+d
B=———— —c_d —c—d”

Note that from (A7) and (A8) follows

(AS)

O< KF<l (A9)

so that the last of (A6) is meaningful.

From Fig. 18 the required capacitance ~ can be readdy

obtained:

c’= g -,6 ~(l,KF)
F[l, (l – K~2)1/2] “

(A1O)

The charge density p(z) may be expressed as

(All)

where the “plus” sign holds for the positive conductor and

the “minus” sign for the grounded one. Equation (Al 1)

may be rewritten as

dQ dp dr dT dt
p(z) = * ———— — . (A12)

C@ dr dT dt dz
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Siice the voltage is equal to 1 V, we have (A1O) and (A14) can be used to, compute Co and p(z) as

do Qc e co = 20

~
=pp ._=_=Af~f ~f~, F[l,(i – KEZ)lIZ]”

(A13)
p(z) = 2p($). (A19)

Finally, from (A12) and (A13) by means of (Al) and The second part of (A19) can be put into (3) to compute

(A5) we obtain the coefficients P.. The integral (3) is best evaluated by

c—d

(

[sn2 (Rz,K) – l][ii’ Sqz (R.z,K) -.1]

)

1/2

F (,z) = &pPRH —
2 [sn (Rz,K) – a][m (Rz,K) – b][m (Rz,K) – c][sn (Rz,K) - d]

(A14)

where

(i – i49’/2 + (1 – ~2)1/2
H = [(1 –A)(l –B)]’12+ [(1+ .4)(i+B)]’i2”

changing the variable of integration according to:

t = sn (Rx, K),

Making use of (A14), we obtain from (3):
K\(AIL)

,,,

/

c—d’l
For every z belonging to the boundary q of the rectangular P. = ZPPH ~

.s(t)g(?z,t)

_, [(t – a)(t – b)(t – c)(t – rl)]l/2czt
region shown in Fig. 17, the function sn is real and given

by [3]: (A20)

sn (R (~ + j~) ,K) ~j~e~ =
sn (Rz,K) { 1 – snz [Ry} (1 - Kz)l@] + K2 sn’ [Ry, (1 - Kz)liz])

1 – sn2 [Ry, (l – Kz)’lz] + Kz im2 (Rw,K) .sn2 [Ry, (1 – Kz)’1’] “
(A16)

Thus the expression (22) always yields real values for

P(z). Note that the charge density has a square-root
singularity in each of the points Af,B’,Cf,D1, and is zero

in .MjiV)PjQ.

For upper bound calculations the expression of the

voltage $(z) on the boundary of the rectangular region

(Fig: 17) is required. Since the voltage on the electric

walls is constant (equal to 1 V and O V, respectively),

only the voltage cm the magnetic walls needs to be

evaluated. In the p plane we have at, once (see Fig. 18)

where Im denotes the imaginary part. By the use .of the

expression for Im (F (r,KF) ) that can be obtained from

[3], (A17) gives

F[(l – KF2#/1 – .KF2)’12, (1 – K~2)’/zl
+(z) =

F[l, (1 – K#) l~z]
7=r(z)

(A18)

In (A18), r is understood to be expressed as a function

of z by means of (A6) and (Al). Again, real values are

obtained for $ in every point on the boundary thanks

to (A16) .

Now let us go back to the cell of Fig, 2 whose capacitance

Co and charge dktribution p(z) are required. This cell is

symmetrical with respect to the x axis so that only one-half

of it, say the shaded region in Fig. 2, needs to be considered.
The sections of the x. axis which are not occupied by con-

ductors may be replaced by magnetic walls. As a con-

sequence, the half-cell is a special case of the general

rectangular cell that was studied in the first part of this

section. Thus once the parameters ZA,ZB,ZC,ZD have been

related to the geometry of the fundamental cell of Fig. i,

where

g (?@) = sin
( )

;F(t,K) + ?@ + e (A21)

and s(t) is the piecwvise-constant function iefined in

Fig. 20, Thus the right side ~f (A20) can be, evaluated as

“the sum of three contributions, corresponding to the

ranges ( - l,d), (u, b), and (c, 1) of the variable t. The

first and/or the last of these may vanish (when W1and/oi

W2 do so). Gauss quadrature formidas may be used to

remove the singularities from the integrand in &uch the

sa~e way as shown in [2].

A similar procedure is ,used to evaluate $. by means of

~A18). In this case, however, a conventional Simpson

integration may be performed since no singularities occur

in the integrand.

APPENi31X B

NUMERICAL ,DETAILS FOR

ILL-CONDITIONED CASES

Ill-conditioned cases may occur when, the width of the

cell ao is very large with respect to its height ho, and the

cell is highly asymmetrical. As an example, suppose that

WI + bl + w << *aO. (Bl)

1 I
d 1

1 I c.
D

1 1
I a

o ~ t
1 1
1 I

I .4

Fig, 20. Step function to be used in integrzkion,
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When (Bl) holds, thestrip isveryclose tooneof the side

walls of the cell and is narrow with respect to it.

Wow wheti

ao >> ho (B2)

the solution K to (A3) is very close to 1, so that we

have [3]

sn (,z,K) s tanh z. (B3)

The function tanh z approaches 1 very quickly as z in-

creases. As a consequence, when (B 1) holds together with

(B2), the parameters a and b defined by (A5) are very

close to — 1. If the calculations are implemented on a

digital computer capable of m significant digits, when

b+l <lo-” (B4)

a and b will be given the value — 1 by the computer ‘and

the calculation of KiJ (and thus Co and p (x) ) by (A7) will

become impossible.

In order to define exactly the domain of geometries

where the difficulty occurs, (B4) is rewritten by means

of (A5) as

sn [l?(-*ao + wl + & + w),K] + 1 < 10–~. (B5)

(B5) can be easily shown to be equivalent to

Wl+bl+w F((~)l@,K)

h,
<

F(l, (l – K2)1W
(B6)

where

2 – 10-m
8=

(1 – K2)10~ + K’(2 – lfj-~) “
(B7)

For example, when ao = 10 ho and m = 6, (B6) becomes

WI + bI + w < 0.52 ho. (B8)

Thus the difficulty may arise in cases of pratical interest.

When (B6) holds, explicit expressions must be found for

the small differences between a, b, and – 1. These expres-

sions are then used to compute A, 1?, and KF from (A7),

(A8) .

The basic formula is again found in [3]:

( 1 – sn2 (v,K)

)

1/2

sn (– F(l,K) + o,K) = –
1 – K’ sn2 (vjK)

(B9)

where v < F(l,K).

Now if we let

sn (— F(l,K) + v,K) = —1 + c (B1O)

where k <<1, from (B9) we obtain

,ml-K2 snz (vjK) _l– K2

~
—P(v). (Bll)

1 – K’ sn’ (v,K) – 2

Thus when m is large enough, say m 26 (which is almost

always the case), and (B6) holds, we have:

a~—1+~(l— K2)a

bm–l+~(l– K2)@

d~–l+~(l– K2)A (B12)

where

()

WI + bl
a=p —

ho

p=p ( )Wl+bl+w

ho

() 2(1 – IJ
A=(2–ll)p ~ +

K(l + K) “
(B13)

Here II is the parameter defined in Table I.

From (A8) we obtain

As–l+(l– K2)~:

B~–l+(l–Kz)P~A
C+l

and from the last of (A7) :

~FE (6– A)’/’– (a–– A)l/2

(8 – *)112 - (a + A)ll’

Equation (B15) is the required formula. In

other ill-conditioned cases may be treated.
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