IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-23, NO. 2, FEBRUARY 1975

f xe~ "Ly L, dx = —p

)

f a?e2L,L, dr = 6p* + 6p + 2
0

f 2oL, L, dz =

0

_4p2
| @ty sy de = p(p — 1),
0

ACKNOWLEDGMENT

The author would like to acknowledge the contribu-
tions of others to the research reported here. The mirrors
were machined by W. Polzin; G. Rasmussen designed cir-

223

cuits and patiently took measurements; and J. D. Zook
freely discussed various aspects of perturbation theory.

REFERENCES

{11 A. L. Schawlow and C. H. Townes, “Infrared and optical
masers,” Phys. Rev., vol. 29, pp. 1940—1949 Dec. 1958.

[2] G. Goubau and F. Schwenng “On the gulded propagation of
electromagnetic wave beams,” IRE Trans. Antennas Propagat.,
vol. AP-9, pp. 248256, May 1961.

8] A. G. Fox and T. Li, “Resonant modes in a maser interfer-
ometer,” Bell Syst. Tech. J., vol. 40, pp. 453-488, Mar. 1961.

4] G. D. Boyd and J. P. Gordon “Confoca.l multlmode resonator
for millimeter through optical wavelength masers,” Bell Syst.
Tech. J., vol. 40, pp. 489-508, Mar. 1961.

5] G. D. Boyd and H. Kogelnlk “Generalized confocal resonator
theory,” Bell Syst. Tech. J., vol. 41, pp. 1347-1369, July 1962.
[6] P. F. Checacci and A. M. Schegg1 “Microwave models of optical

resonators,” Appl. Opt., vol. 4, pp. 1529-1333, Dec. 1965.

(7] H. Kogelmk and T. L1 “T ager beams and rebonators 7 Appl.
Opt vol. 5, pp. 1550—1567 Oct. 1966.

8] R. W. Zimmerer, “Spherlcal wirror Fabry-Perot resonators,”
IEEE Trans. Microwave Theory Tech., vol. MTT-11, pp. 371~
379, Sept. 1963.

9] G. Sansone Orthogonal Functions.
1959, ch. Iv.

New York: Interscience,

A Unified Variational Solution to Microstrip

Array Problems

VITTORIO RIZZOLI

Abstract—A very general variational procedure'is used to com-
pute single or coupled microstrips under the quasi-TEM approxima-
tion. The capacitance model is found by means of a unique funda-
mental cell. The method is essentially an extension of Smith’s [1],
but may be used to study a wider variety of problems, such as non-
uniform strip arrays, coplanar striplines, and broad-side coupled
strips. Moreover, it is also possible to compute the coupling capaci-
tance between nonadjacent strips.

I. INTRODUCTION

T has been shown in [17], [2], that the capacitance
model of single or coupled microstrip lines can be
computed when capacitances of suitable ‘“fundamental
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cells” are known. A fundamental cell is a single-strip
rectangular region bounded by electric and/or magnetic
walls. In [1] uniform strip arrays are computed by means
of two fundamental cells, while in [2] the procedure is
extended to nonuniform arrays by use of three fundamental
cells. In the present paper a unique fundamental cell is
used, including all the different types as special cases. In
this way the computation procedure is unified and be-
comes particularly suitable for programming on a digital
computer. Coplanar striplines as well as broad-side
coupled strips can be caleulated by this method; the saving
in computer time is high (up to 70 percent) with respect
to techniques based on optimization of the charge distribu-
tion, such as [7], and even higher with respect to relaxa-
tion techniques, such as [6]. This is due to the use of
a variational method in the computations. The method is
also suitable for computing the coupling capacitance
between nonadjacent strips of a coplanar array.
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1I. CAPACITANCE CALCULATION FOR
A RECTANGULAR CELL

The fundamental cell that will be referred to throughout
this paper is shown in Fig. 1. Magnetic and electric walls
are represented by dashed and full lines, respeectively,
while a dotted and dashed line may represent either type
of wall. In Fig. 1, w; () is understood to be zero when the
left (right) wall is magnetic. Zero thickness conductors
are assumed.

Now suppose that the center strip is held at a 1-V
potential while the two side strips are grounded. Then
a lower bound on the capacitance C of the center strip
with respect to ground may be found by the variational
series [2]:

«Q
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TABLE 1

value of I‘l type of left wall value of I type of right wall

1 electric 1 electric
2 magnetic 2 magnetic
™
¢ ES
20+ | I, — L)
6=(I— 1)3=
w= (I, — 1)(I, — 1). (4)

Finally, the increment of the summation variable # is
given by

1 U Qo
= = + 70 n n2 1
C &o/g: + e«t/(g1 + dife)  2Q* Xn:f P ) An =1+ |I,—1}|. (5)
where This formulation, although somewhat cumbersome, is very
l tanh (nwge/1)[tanh (nwdi/l) + tanh (nrg/l)e.]

o= e tanh (nrgs/D)[1 + e tanh (nmg/l) tanh (nrdy/l) Je + tanh (nwdi/l) + e tanh (nrgy/l)

In (1), Q represents the total charge on the center strip,
and p, is the nth coefficient of the Fourier expansion of the
line charge density p(x) at the upper air-dielectric inter-
face (i.e., for y = g1 + di). In order to compute p, when
w; and/or w, is nonzero, the negative charge on the side
strips must be taken into account.

Equations (1) and (2) are so written as to include all
the possible cases; the parameters ! and % in them must
be specified according to the type of side walls. The same
is true for the following expression of the coefficient p,:

) ao/2
po== [ o@ sinln(rz/i+¢) +01ds. (3)
Qo ¥ —gop2

The different values of the parameters u,l,¢,6 are best
expressed in terms of two indexes, I; and I,, whose values
are bound to the type of side walls in the way shown in
Table 1.

When I; and I, are given the values specified in Table I,
we have

L= Q0+ [L—TI]a

A
4
| |
9, l i
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2 2
Fig. 1. Basic rectangular cell.

(2)

useful in view of the automatic computation of the
capacitance.

In practical cases, a trial function is used to calculate the
coefficients p, and the total charge Q. Since the expression
(1) is stationary with respect to p(z), a good approxima-
tion can be achieved even by a poor choice of the trial
function. Here, the trial function will be chosen as the
effective charge density for a homogeneous symmetrical
cell having height 2k, as shown in Fig. 2. ke is defined as

(6)

so that a good trial function is found even in the case of
inverted microstrips.

If the capacitance of this cell is denoted by C,, then
from (1) we can obtain the series:

ho = min (g1 + di,g2)

1 2 + [ <éoao + €9y ) 1 ho ]
e — == _
C (ér -+ 1)00 g2 g1+ d1/€r (ér + 1)60(10

Qo hind 3 9

> (5 = 2 ) o (1)

where

Fuo = tanh 770 (8)

2n1rey l

Equation (7) is Smith’s series for C; it is much more
rapidly converging than (1) since its nth term decays
exponentially with increasing n for large values of n. In
most practical cases the capacitance in air C;is also re-
quired. This is simply obtained by putting ¢ = 1 in (2)
and (7). Note that the same trial function, i.e., the same
coefficients p,, may be used in the two cases so that C
and C; may be computed simultaneously with a negligible
inerease of computer time.

An upper bound on the value of ' may be easily found
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Fig. 2. Homogeneous symmetrical cell for trial function calcu-

lations.

as well. In fact, it should be noted that (1) holds exactly
when the coeflicients p, and the total charge @ are com-
puted by means of the true charge-distribution function
p(z). In this case @ = C since the voltage is unity. Now
if we denote by ¢ () the voltage at the upper air-dielectric
interface, from (1) follows:

€ €lo ol
C = - 7 2 Suilin? 9)
u<g2 +gl+dl/e,>‘”° UDLYZINC
where
. o

In (9), ¥. is the nth coefficient of the Fourier expansion
of ¢(z) and is given by a formula similar to (3). For
n = 0 we have:

1 ao/2
w==[" v a.

Qo Y g2

(11)

Again, expression (9) is stationary with respect to the
function y (z), provided that only variations are considered
leaving unchanged the voltage on the conductors. When
a trial function is used in place of the true y(z), (9) gives
an upper bound on the capacitance C. Now if the trial
function is choseh in the same way as before, i.e., it is
taken as the true voltage distribution for the homogeneous
cell of height 2k, the upper and lower bound are typically
within a few percent units of each other in a wide range
of geometries. Of course, the error could be minimized by
giving C a value equal to the average between the upper
and lower bound. However, since no practically significant
difference is found, the numerical results presented in this
paper are based only on lower bound calculations. This
has the advantage of a 50-percent saving in computer
time. A more rapidly converging series can be obtained
from (9) by a procedure similar to that leading from (1)
to (7).

A detailed calculation of the trial functions p(z) ¢ ()
is presented in Appendix A.

II1. APPLICATIONS

A. Coupling Capacitance Between Nonadjacent Sirips

Let us consider an array of equal and equally spaced
strips, as shown in Fig. 3. In Fig. 4 we show the assumed
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Fig. 3. Uniform array of coupled microstrips.
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Fig. 6. Capacitance model of each cell.

capacitance model for the array. The self-capacitance C
and the coupling capacitance between adjacent strips Ca
can be computed by the method described in [17]. A com-
putation procedure for C; will now be developed.

Suppose that the strips of the array are held at constant
potentials whose values (in volts) are given by the
sequence -++1 0 —1 0 1 0 —1---.If this is the
case, the electric-field pattern has an odd symmetry with
respect to the center of each grounded strip. Thus eleetric
walls can be introduced without perturbing the electric
field (see Fig. 5), so that the array is divided into cells con-
taining only one conductor each. Any one of these cells
is a special case of the fundamental cell of Fig. 1, so that its
capacitance C, may be regarded as known. On the other
hand, the capacitance model for each cell (drawn from
Fig. 4) is as shown in ¥ig. 6. Thus we have
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Fig. 10. Capa.cita,nce model of three-wire line.

C.=C -+ 20, + 4C;

yielding C; once C,, C, and C4 have been computed.
As an example, the capacitance model was computed for
an array whose reference dimensions are

(12)

g1 = @2 = 10 mm -

d1 = 0.5 mm
s = 0.2mm
w = 0.5 mm
& = 10. (13)

. In Figs. 7-9, C, C4, and C; are plotted versus w, s, and ¢y,
respectively. The parameters which are not varied in each
plot are held to the values given by (13). These plots were
drawn by a Benson plotter driven offline by a CDC 6600
computer. ‘

It can be seen that Cs is always small with respect to Cy4,

while it may be comparable and even large with respect
to C depending on the geometry. However, the effect of C;
on the electrical behavior of the device is usually negligible,
owing to the fact that C; << C4. As a check of this state-
ment, consider the three-wire line that can be obtained
from the array by grounding all of the strips, except for
three consecutive ones. The capacitance matrix of such
a line is

C + 204 + 2C; —Ca —Cs
—Ca4 C + 2C4 + 2C; —Cs
—C} —Cy C+ 204 + 2Cs

(14)

as can be inferred from the model of Fig. 10. In the case
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Fig. 11. Characteristic impedance of coplanar stripline.
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Fig. 12. Relative phase velocity of coplanar stripline.
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of the array defined by (13), we have:

[ 146.24 —66.02 —6.44]
—66.02 146.24 —66.02 (15)
| —6.44 —66.02 146.24 |
while neglecting the effect of Cs yields:
[ 133.36 —66.02 0 ]
—66.02 133.36 —66.02 (16)
L O —66.02 133.36

All capacitances are expressed in picofarads/meter. In the
two cases the relative phase velocities of the normal modes
are given by

Cs # 0 Cs =0
0.478 0.469
0.447 0.437
0.434 0.431. (17)

Thus in this ease maximum percentage change is about
2 percent.

B. Coplanar Stripline

When the side walls are both electrie, the fundamental
cell of Fig. 1 is identical to the cross section of a coplanar
stripline (see [5], [6]). The characteristic impedance and
relative phase velocity can be computed from the dielectric
and air capacitances C and C; by means of the well-known
formulas:

_
Vo (CCI) 1/2

Cl 1/2
»=(2)

where v, = 2.998 m/s. Note that unsymmetrical as well
as symmetrical strips may be computed in this way.

In Figs. 11 and 12 the characteristic impedance and
relative phase velocity are plotted versus the width
wy = w; of the grounded side strips for a coplanar stripline
having:

Z, =

(18)

g1 = g2 = 10mm

dy = 0.5 mm
ay = 20 mm
e = 10 (19)

and for three different widths, i.e., 0.5, 1, and 2 mm.
An excellent agreement exists between the data in
Figs. 14 and 15 and the results published in [107.

C. Broad-Side Coupled Coplanar Striplines

Fig. 13 shows the cross section of a pair of broad-side
coupled coplanar striplines. In this case the section is
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Fig. 14. Even- and odd-mode lines for coplanar pair.

symmetrical with respeet to the middle of the dielectric
slab. In Fig. 14(a) and (b) the associated even and odd
cells are shown. Note that the capacitance of the odd eell
can be directly computed by the procedure of Section I1
since this is a special case of the fundamental cell. The
capacitance of the even cell may still be computed by the
series (7) with [4]:

I = o tanh (nwgs/a)
" nre 1+ ¢ tanh (nwdy/ao) tanh (nrgy/ao)
hy = ga. (20)

This procedure holds even for cross sections that do not
have a vertical plane of symmetry. Once the even and
odd capacitances C.,C, and the corresponding values in
air, C4,C., have been found, the even- and odd-mode
impedance and relative phase velocity are given by

1
Zo= —r—
Vo ( Cecel) 12

1
Lo = ——
Vo ( CoCal) 2

Ca\"
(%)
Ca\"*
_CE

As an example, in Iig. 15 the impedances and phase

velocities are plotted as a function of w; = wy for a line
having

(21)

g2 = Hmm

d] = 0.5 mm

w = 0.5 mm

ay = 20 mm

10. (22)

Perhaps the most attracting feature of this kind of line
is the tight coupling that can be achieved between the two
parallel conductors. Let us consider a section of length !
of the line as a four-port network, the ports being taken

€ =
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Fig. 15. Even- and odd-mode characteristic impedance and relative phase velocity for coupled coplanar striplines.

in the order shown in the insert of Fig. 16. The entries of The conditions (24) are met at a given frequency f when
the scattering matrix of this network will be denoted by the length of the coupler is [7]:
S11,821,831,5a. Let the load impedance at each of the ports

be given by l = %ﬁ (26)
R = (Z.Z.)'". (23) "o
In this case the coupling in decibels is
In order that the device behave as a directional coupler, coupEng
one of the following sets of conditions must hold: C = —201logy | su |
= — 202
su =0 = 20 logu __;_’”9_‘ (27)
sn=20 (24) p(6*—1)
or where
Sn = 0
ZoOVz — (Z.)2
_ (Z) (Zo) (28)

sa = 0. (25) P =@+ (Zyn
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Fig. 16. Coupling in decibels for coplanar stripline directional coupler.

20,
_m@__) . (29)
Vpe — Vpo
In turn, the conditions (25) are met when the length

is one-half of (26). In the latter case the coupling is again
given by (27) with (29) replaced by

TVpo )
UPe — VDo, )
In Fig. 16 the coupling in decibels for these situations is
plotted as a function of wy = w. for the same line that is
referred to in Fig. 15. As a first example, a 6-dB coupler
having sy = 0 can be obtained when wy; = w: = 2.6 mm
with a length of the coupled section of 6.9 ecm at 4 GHaz.
As a further example, a 0-dB coupler from port 1 to 4 can
be realized when w; = w; = 7.5 mm with a length of the
coupled section of 4.35 cm at 4 GHz.

6 = exp (-—j

6 = exp (~j (30)

IV. CONCLUSION

A very general variational procedure has been proposed
for the calculation of uniform microstrip transmission lines
under the quasi-TEM assumption. This method is highly
efficient from a numerical point of view and its formulation
is particularly suitable for programming on a digital
computer.

A Fortran routine based on the formulas presented here
has been written by the author and the results of some
calculations are presented. These results agree with other
published results concerning the classical cases of uniform

\

microstrip arrays [1] and symmetrical broad-side coupled
strips [8].

In addition, other cases such as nonsymmetrical cross
sections, coplanar striplines, and coupling between non-
adjacent strips may be treated without further com-
plication.

APPENDIX A

GENERAL CONFORMAL MAPPING IFOR
A RECTANGULAR REGION

Let us consider a rectangular region filled with a hom-
geneous medium of permittivity e whose boundary is
made of two electric and two magnetic walls. A possible
geometry is shown in Iig. 17. We want to compute the
capacitance C between the electric conductors and the
line charge density on them when they are held at 1-V
and 0-V potentials, respectively. This problem is very
general and includes all the cases which are of interest here.

The dimensions of the rectangular cell are denoted by
ao and ho. Note that the point (0,hy) may be assumed to
belong to an electric conductor owing to the type of
fundamental cells we are interested in (see Fig. 1). The
contour of Fig. 17 will be mapped onto that of Fig. 18,
whose capacitance is known, by a conformal mapping
p = p(2). The mapping is accomplished by successive
steps.

First, the contour of Fig. 19(a) is obtained by the map-
ping function

t = sn (Rz,K) (A1)
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Fig. 19.

where sn is the Jacobian sine-amplitude function, and R
is given by

_ 2F(1,K) _ F[1,(1 — K2)12]

ay ho

R (A2)

By F(t,K) we denote the first incomplete elliptic integral
of modulus K. The constant K (0 < K < 1) is the solution
of the transcendental equation

F(1,K) ap

FIL(1 = K] 2h (43)

=

and thus may be expressed in terms of 6 functions [3] as
follows:

_ (800exp (—v/n) I\’
K= (03[0,exp <—1r/r>3> '

(Ad)
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The real numbers a,b,c,d defined in Fig. 19(a) are

now given by (see Fig. 17):

6 = sn (Rz4,K)
b = sn (Rep,K)
‘¢ = sn (Rze,K)
d = sn (Rzp,K) (Ab)

while the mappings leading from the contour of Fig. 19(a)
to that of Fig. 18 through Fig. 19(b) and (¢) are

T 2t _c+d
c—d c¢—d
B el
IT—Q3
p = F(r,Kp). (A6)

The constants appearing in (A6) must be given the follow-
ing values:

1 14+ AB4[(1—4)(1—B)]»
= A+ B
=Q3_A
0N ¢ — A
B(1 — A%z — A(1 — By
Ko = ( 9) ( ) (AT)

(1 — AZ)I/Z + (1 — B2)1I2

Finally, A and B are defined in Fig. 19(b) and may be
expressed through the first of (A6) as

4 = 2a ¢+ d
c—d c¢—d
2
_ b o+ d . (AS)
c—d c¢—d
Note that from (A7) and (AS8) follows
0<Kr<1 (A9)

so that the last of (A6) is meaningful. )
From Fig. 18 the required capacitance C can be readily
obtained:

- A'B F(1,Kr)
C = EC—,D—, = 2e¢ FIL(1 — Ket) 7] (A‘IO)
The charge density p(z) may be expressed as
)
plz) = £ o (Al11)

where the “plus’ sign holds for the positive conductor and
the “minus” sign for the grounded one. Equation (All)
may be rewritten as

dQ dp dr dT dt

. Al12
dp dr dT di dz ( )

B(z) = =%
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Since the voltage is equal to 1 V, we have
g
dp

Finally, from (A12) and (A13) by means of (Al) and
(A5) we obtain

4§ @ ;
T N T FLL(1 - KA

(A13)

A'B"  A'B
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(A10) and (Al4) can be used to compute C, and p(z) as
C,=2C
p(z) = 2p(x). (A19)

The second pért of (A19) can be put into (3) to compute
the coefficients p,. The integral (3) is best evaluated by

5(2) = ppRH d(

where

T —Du-pr+arad+ o

For every z belonging to the bouridary ¢ of the récﬁaﬁguiar
region shown in Fig. 17, the function sn is real and given

by [31:

[sn? (Rz,K) — 11[K2sn? (Rz,K) —. 1] >1/2 (AL4)

2 \[sn (Rz,K) — a][sn (Rz,K) — b][sn (Rz,K) — ¢][sn (Rz,K) — d]

changing the variable of integration according to:
(1 — A2 4 (1 — B2)ie ¢t = sn (Rz,K).
Making use of (Al4), we obtain from (3):

(A15) —-drt s()g(n,t)
= 200 - do /_1 [—ai-bit-ogt—am"
(A20)
sn (Rz,K) {1 — sn? [Ry,(1 — K?)1?] + K?sn? [Ry,(1 — K?)!27]} (A16)

sn (R(x + JZ/) ’K)-'H-J'uw =

1 —sn®[Ry,(1 — K?)¥2] 4 K?sn? (Ra,K) -sn? {Ry,(1 — K2)12] °

Thus the expression (22) always yields real values for
p(2). Note that the charge density has a square-root
singularity in each of the points A’,B’,0",D’, and is zero
in M;N,P,Q.

For upper bound calculations the expression of the
voltage ¢(2) on the boundary of the rectangular region
(Fig: 17) is required. Since the voltage on the electric
walls is constant (equal to 1V and 0V, respectively),
only the voltage on the magnetic walls needs to be
evaluated. In the p plane we have at once (see Fig. 18)

Im (p)

Im(p) |
F(L,(1— Kp)™)

'pl’(p) =1- B,C/

(A17)

where Im denotes the imaginary part. By the use of the
expression for Im (F(r,Kr)) that can be obtained from
[3], (A17) gives

FL(1 — Ker/1 — Ket)U%, (1 — Ket)']

Vi) = FLL(L — K9]

r=7(2)
(A18)

In (A18), 7 is understood to be expressed as a function
of z by means of (A6) and (Al). Again, real values are
obtained for ¢ in every point on the boundary thanks
to (Al6). »
Now let us go back to the cell of Fig. 2 whose capacitance
C, and charge distribution p(z) are réquired. This cell is
symmetrical with respect to the z axis so that only one-half
of it, say the shaded region in Fig. 2, needs to be considered.
The sections of the x axis which are not occupied by con-
ductors may be replaced by magnetic walls. As a con-
sequence, the half-cell is a special case of the general
rectangular cell that was studied in the first part of this
section. Thus once the parameters z4,2p,2¢,2p have been
related to the geometry of the fundamental cell of Fig. 1,

where
. fnw
g(i,t) = sin (?B—l F(t,K) + no + 0> (A21)

and s(t) is the piecewise-constant furction defined in
TFig. 20. Thus the right side of (A20) can be evaluated as
the sum of three contributions, corresponding to the
ranges (—1,d), (a,b), and (¢,1) of the variable ¢. The
first and/or the last of these may vanish (when w; and/or
we do s0). Gauss quadrature formiulas may be used to
remove the singularities from the integfand in much the
sarhe way as shown in [2].

A similar procedure is used to evaluate ¥, by means of
_(AiS). In this case, however, a conventional Simpson
integration may be performed sihce no singularities oceur
in the integrand. .

APPENDIX B

NUMERICAL DETAILS FOR
ILL-CONDITIONED CASES

Ill-conditioned cases may oceur when the width of the
cell a, is very large with respect to its height A, and the
cell is highly asymmetrical. As dn example, suppose that

wy + by + w <K 2ag. (B1)

s(t)

g —

d c
' ‘

i |
1 !

| '

-4

Fig. 20. Step function to be used in integration,
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When (B1) holds, the strip is very close to one of the side
walls of the cell and is narrow with respect to it.

Now when
(B2)
the solution K to (A3) is very close to 1, so that we
have [3]

ay > ho

sn (2,K) ~ tanh 2. (B3)

The function tanh z approaches 1 very quickly as z in-
creases. As a consequence, when (B1) holds together with
(B2), the parameters ¢ and b defined by (A5) are very
close to —1. If the calculations are implemented on a
digital computer capable of m significant digits, when

b4+1<10™ (B4)

a and b will be given the value —1 by the computer and
the calculation of Kr (and thus C, and p(z)) by (A7) will
becomeé impossible.

In order to define exactly the domam of geometries
where the difficulty oceurs, (B4) is rewritten by means
of (A5) as

sn[R(—%a +wi + b+ w),K]+ 1< 10 (B5)
(B5) can be easily shown to be equivalent to
w4+ b+ w F((8)'%K)
T Fo,a -y PY
where
5 = 2 — 10 . (BY)

(1 - K»10" + K*(2 — 10—)
For example, when ay = 10 hy and m = 6, (B6) becomes
wi + by + w < 0.52 o (BS)

Thus the difficulty may arise in cases of pratical interest.
When (B6) holds, explicit expressions must be found for
the small differences between a, b, ahd — 1. These expres-
sions are then used to compute 4, B, and Ky from (A7),
(A8).

The basie formiila is again found in [3]:

( 1 — sn? (v,K)

1/2
s (=P +0K) = — (o K)> (B9)

where v < F(1,K).
Now if we let

sn (—F(LK) +0,K) = —1+ ¢ (B10)
where € << 1, from (B9) we obtain
1-K2  sn?(v,K) 1 - K?
~ = . 11
€ 21— Kso® (0,K) 5 p). (B

Thus when m is large enough, say m = 6 (which is almost
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always the case), and (B6) holds, we have:
e~ —1+4+ 3(1 — K¥)a
b —14 3(1— K8

d>~ -1+ 3(1 — K?)A (B12)
where
o = (w1 + bl)
4 To
(w1 + b+ w>
B =p —
0
_ Wy 21 — Iy
A= (2—-IL)p ( >+K———~—(1 T K (B13)
Here I is the parameter defined in Table I.
Froin (A8) we obtain
— A
A~—14 (1-K»Z
+ ) c+1
B8 — A
B~ —1 1 - K? 14
+ (1= K) (B14)
and from the last of (A7):
. — 1/2 __ — 1/2
Ky~ (B— A — (a—4) (B15)

(B — A)1/2 _ (a + A)IIZ :

Equation (B15) is the required formula. In a similar way
other ill-conditioned cases may be treated.
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